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ABSTRACT Determining and depicting the landscape-wide outcome of temperature-de-
pendent ecological processes is important in the study of spatial patterns in insect ecology as
well as in the efficient deployment of human and material resources for pest management. A
generalized approach is proposed that consists of a temperature-driven simulation model that
uses data from a limited number of strategically located points in the landscape as its input.
Elevation, slope, and aspect are varied systematically for each point. Air temperature data are
obtained as both real-time and climatic average data, matched with simulation points on the
basis of distance, elevation, and climatic zones. Differences in latitude and elevation are com-
pensated for with lapse rate transformations. Slope and aspect are combined into a single
exposure expression, and overheating is calculated on the basis of incoming solar radiation.
Landscape-wide projections of features in model output are obtained by algebraic transfor-
mation of a digital elevation model of the landscape, using a multiple regression equation
relating the output feature to latitude, longitude, elevation, and exposure. The various sources
of error involved in seasonal forecasting in insect ecology and management, as well as an
outline of the procedure required to test the validity of landscape-wide projections, are dis-
cussed through a case study of the phenology of the spruce budworm, Choristoneura fumi-
ferana (Clemens).

KEY WORDS landscape ecology, decision support, temperature-driven models, seasonality,
forecasting, mapping

MANY OF THE key processes in insect ecology and
pest management are temperature-dependent
(Janisch 1932, Precht 1973). Temperature depen-
dence makes the timing of events vary consider-
ably among seasons and landscapes. Timing affects
the outcome of interactions between insects, their
environment, host plants, competitors, natural en-
emies, and humans. Short-term forecasting capa-
bilities are needed for the efficient deployment of
personnel and material resources for pest moni-
toring and control, particularly given the impor-
tance of reducing the environmental impact, en-
hancing the efficiency and reducing the costs of
pest management activities (Cammell and Way
1987).

Considerable effort has been devoted to the de-
velopment and testing of phenology models (Wag-
ner et al. 1984a, b, 1991; Schaalje and van der
Vaart 1988). Development of such models has
been facilitated by computer algorithms (Dallwitz
and Higgins 1978, Schoolfield et al. 1981, Wagner
et al. 1984a) and expert systems (Logan 1988,
1989). The use of these models in ecological re-
search and pest management is not always simple.

Computer-assisted decision support systems are
tools designed to organize, integrate, and present
information about a particular resource or pest

management problem to a decision maker (Mum-
ford and Norton 1984, Coulson and Saunders
1987). This information can be used to arrive at
specific management prescriptions (Baskerville
and Moore 1988, Power 1988, Thorpe et al. 1992).

Much of the effort in the development of deci-
sion support tools for pest management has been
devoted to the creation, display, and manipulation
of maps that depict the distribution and nature of
resources to be protected, the associated pest pop-
ulations or damage to identify areas in need of pro-
tection, and to develop optimal harvesting-protec-
tion schedules (Power and D’Eon 1992, Liebhold
et al. 1993, Roberts et al. 1993). However, much
less attention has focused on providing support for
the development of more detailed seasonal inter-
vention plans (Gage et al. 1982), or on studying
the influence of landscape features on insect ecol-
ogy (Perry 1988, Schowalter and Means 1988,
Lamp and Zhao 1993, Landsberg and Gillieson
1995). Forecasting insect seasonal biology at the
landscape level presents several problems, such as
providing models with adequate input temperature
information, carrying out large numbers of simu-
lations, and interpreting and mapping results (Ross
et al. 1989, Rock et al. 1993, Russo et al. 1993,
Schaub et al. 1995).
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This article proposes a generalized approach to
landscape-wide forecasting of seasonal processes
using temperature-driven simulation models. This
approach draws many elements from the works of
Russo et al. (1993) and Schaub et al. (1995) and
has been incorporated into a computerized, sea-
sonal biology forecasting system called BioSIM
(R6gni&-e  et al. 1995a). Sources of error inherent
to the process of seasonal biology forecasting are
discussed through the analysis of a case study—the
seasonal biology of spruce budworm, Choristoneu-
ra fumiferana (Clemens).

Materials and Methods

Overview. Two methods have been used to gen-
erate landscape-wide forecasts of insect develop-
ment. Russo et al. (1993) generated mesoscale
temperature data from multiple regression equa-
tions that predict daily minimum and maximum air
temperature from latitude, longitude, and eleva-
tion using all weather stations in an area. These
data were used as input to a degree-day model of
gypsy moth, Lymantria dispar (L.), egg hatch that
was run for each pixel of a digital elevation model
of the landscape, producing a map of 50% egg
hatch as output. This technique uses all available
regional weather data and is robust to local cli-
matic peculiarities, but it requires considerable
computational power.

Schaub et al. (1995) used weather data from a
single source (base station) to run a gypsy moth
development model for an array of elevations, ad-
justing for elevational differences from the base
station through a constant vertical lapse rate
(0.50C/100 m). They then regressed the forecast
target event output by the model (date of 50%
2nd-instar emergence) with elevation. They called
the resulting equation a target function (or t-func-
tion) and used it to transform a digital elevation
model of the area of interest into a target-event
map. This approach has the advantages of simplic-
ity and computational speed. However, it makes
use of a single source of weather data with the
inherent loss of information and risk of local bias.
Also, vertical lapse rate was considered the sole
source of temperature variation across the land-
scape, although their approach could be expanded
to take into account other sources of geographic
variation in temperature such as latitude, longi-
tude, slope, and aspect (Rosenberg et al. 1983).

Both methods suggested the use of normals
when forecasting or simulating expected develop-
ment. Normals are temperature statistics (averages
or extremes) calculated by days or months over
standard periods of 30 yr that are updated every
decade (the latest normal-generating period was
1961–1990). Thus, normals do not represent the
natural daily fluctuations of air temperature. Their
use as model input leads to considerable bias in
simulated phenology (R6gni&-e  and Bolstad 1994)
because of the nonlinear nature of insect devel-
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Fig. 1. Outline of proposed approach to landscape-
wide forecasting of outcome of temperature-driven sea-
sonal processes in insect ecology and pest management
(basic design of BioSIM system). Locations can be an
arbitrary list or can constitute a rectangular grid over area
of interest. Weather databases, climatic zone definitions
(if any), and regional vertical lapse rates are implemen-
tation-specific. Target-event definition specifies feature of
interest to be extracted from model output. In this ex-
ample, target event may be date at which relative fre-
quency of 7th life stage is maximum.

opmental responses to temperature, the so-called
Kaufmann effect (Werner 1992). R6gni&e and
Bolstad (1994) devised a simple method to restore
daily variation around normals (see also Bruhn
1980).

The generalized approach proposed here is il-
lustrated in Fig. 1. A simulation model is run for
a number of latitude, longitude, elevation, slope,
and aspect combinations. Slope and aspect are
combined into a single expression-exposure to
sunlight. Temperature data used as input for each
simulation are assembled from various nearby
sources chosen from temperature databases and
are corrected for differences in latitude, elevation,
and exposure between the simulation point and the
data source. Model output is interpreted to extract
features of interest, or target events. The term
“target event” is used here-to remain consistent
with Schaub et al. (1995), although the current ap-
proach is by no means restricted-to timing consid-
erations. Any feature of model output can be the
object of such analysis and projection to the land-
scape level. A relationship between the target
event and latitude, longitude, elevation, and ex-
posure is then estimated. This relationship serves
as the basis for the algebraic transformation of a
digital elevation model into a target event map.
The methods used to select weather stations, to
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compensate for differences in elevation, latitude,
and exposure, and to transform a digital elevation
model into a target event map are described below.

Temperature Regime Assembly. An input tem-
perature regime, defined as a series of daily mini-
mum and maximum air temperatures, is assembled
for a specified target site and period of time using
data from 3 geographically referenced weather da-
tabases. The 1st, called the real-time database,
contains daily minimum and maximum records
from an array of recording stations. The 2nd con-
tains mean minimum, mean maximum, extreme
minimum, and extreme maximum air temperature
normals by month (the normals database). The 3rd
is a 5-d forecast database consisting of short-term
regional weather forecasts such as are generally
available from weather service agencies. Data from
the real-time database are used to run simulations
up to the present. Normals are used to generate
future air temperatures and to fill in gaps in real-
time records. Five-day forecasts are used to predict
air temperature over the short term. The location
of temperature data sources in each database for
a given target site need not be the same. The fol-
lowing 4 functions are performed during temper-
ature regime assembly for a target site (Fig. 1): (1)
selection of the best sources of temperature data,
(2) adjustment for latitude and elevation differ-
ences between source and target sites, (3) gener-
ation of stochastic daily minimum and maximum
air temperatures from monthly normals, and (4)
adjustment for exposure. In the resulting time se-
ries of daily minimum and maximum air temper-
atures, real-time temperature data and 5-d fore-
casts, when available, supersede normals.

Minimum distance is the basic criterion used to
select the best sources of temperature data for a
target site. However, there may be situations
where the density and distribution of sources of
weather data in relation to the general climatology
or topography of an area justifies the use of addi-
tional criteria such as elevation. Under some cir-
cumstances, it may be preferable to select a more
distant source of temperature data that is at a more
similar elevation. The elevation tolerance criterion
is the maximum tolerable difference in elevation
between source and target sites. An elevation tol-
erance criterion arbitrarily set at 250 m produced
satisfactory results during operational testing of
BioSIM in Quebec and New Brunswick (R6gni&-e.
et al. 1995b). In areas where significant climatic
heterogeneities exist (other than topography) and
where weather stations are sparse, it may be nec-

, essary to define climatic zone boundaries within
which to restrict the search for weather data
sources. For example, the proximity of a significant
body of water (herein the maritime effect) can
constitute the basis for a climatic zone partition, as
was done in the New Brunswick test (Fig. 2).
When such a partition exists and is used to select
sources of weather data, the system searches with-
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Fig. 2. Map of New Brunswick showing the 3 climatic
zones (East Shore, Bay of Fundy, and Inland), the sam-
pling sites, and the area boxed in covered by landscape-
wide forecast generated in case study.

in a climatic zone for the station nearest the target
site.

Once weather data sources have been selected,
temperatures are adjusted for differences in ele-
vation and latitude between the source and the tar-
get sites, using “lapse” rates. These rates vary sys-
tematically with time of year and are different for
minimum and maximum air temperatures ( R6gni-
&-e and Bolstad 1994). Because vertical lapse rates
also vary geographically (notably as a result of mar-
itime influences), BioSIM allows their values to be
specified.

The normals database contains monthly mean
and extreme minima and maxima that BioSIM uses
to forecast daily temperatures by generating a sto-
chastic series of daily values ( R6gni&-e and Bolstad
1994). Stochastic deviations about normals are dis-
tributed normally around the mean minimum or
mean maximum, with a variance that is determined
from the extremes. These deviations are generated
so that there is a significant correlation between
daily minimum and maximum temperatures (i.e.,
warm and cold days). Also, minima and maxima on
successive days are autocorrelated to simulate the
passage of air masses (i.e., warm and cold spells).
However, the algorithm does not produce signifi-
cant deviations from normals as often occurs in
nature. Each temperature regime thus generated
is stochastically distinct, and there may be a need
to replicate simulations when normals are used as
model input.

Slope and aspect, through their influence on in-
solation, can have a significant influence on micro-
climate, particularly on daily maximum tempera-
tures (Rosenberg et al. 1983). Exposure to sunlight
varies with time of year, latitude, and elevation, as
well as cloudiness. The system assumes that weath-
er stations in the databases were installed on level
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terrain, a standard practice in weather-monitoring
equipment installation. The algorithm used in
BioSIM to take slope and aspect into consideration
was adapted from the model of Bolstad et al.
(1996) that simulates air temperature regimes in
lodgepole pine stands in mountainous terrain. This
algorithm integrates radiative energy per unit sur-
face area (~, watts/cm2) during the time of maxi-
mum irradiation (between 1100 and 1500 hours,
local solar time) on a surface with specified slope
and aspect. It takes into consideration the position
of the sun and the amount of available solar radi-
ation (incident and diffuse) as functions of time of
day:

/

15

(p= l,[Cos(~,) + 0.136 Cos2(Slope)]  dt, (1)
11

where

(2)

represents the proportion of total exe-atmospheric
flux (F = 1,373 watts/cm2) that reaches the ground,
7t is atmospheric transmittance, a function of solar
zenith and site elevation, and Ot is the length of
the optical path through the atmosphere, a func-
tion of solar altitude (equation 2 from Hottel 1976,
for a clear sky with 23 km visibility). In equation
1 (adapted from the solar trajectory equations of
Paltridge and Platt 1976), Wt is the angle between
the surface normal and incoming direct radiation.
The value 0.136 in the 2nd term in parentheses in
equation 1 is an estimate of the average proportion
of incoming light that is scattered in the atmo-
sphere and reaches a level surface as diffuse light.
The amount of diffuse light irradiating a surface is
a function of its slope only.

An overheating index (v) is computed from the
difference in incident energy between the target
surface (~T) and a level surface (Qo), at the same
elevation and latitude, relative to the largest such
difference that is likely to occur during the year in
the northern hemisphere, AtPmw = 1,500 watts/cm2

over 4 h. This value was estimated iteratively with
equation 1 and occurs in March at 78°N at sea
level on a 45° slope with a 195° aspect. The value
of v is thus:

This index does not exceed v = 1 and can drop as
low as v = – 1.935 (in July at 64° N at sea level on
a 45° slope with a 15° aspect). The extent of actual
overheating of the target site also depends on
cloudiness. Several authors have assumed success-
fully that cloudiness is correlated with the daily
(unadjusted) range in temperature R = T X – Tn

(e.g., R6gni&-e 1982, Bolstad et al. 1996). Thus,
the daily air temperature maximum, adjusted for
slope and aspect of the target site, is given by:

1
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Fig. 3. Relationship between index of exposure A
[equation 5) and overheating index v (equation 3) for var-
ious combinations of slope (045°) and aspect (0–360°) at
3 latitudes (25°, 45°, and 65°N) in January (a-c) and June
(d-f).

T’'x = Tx + vRAT~, (4)

where ATR = 0.1429 is maximum overheating rel-
ative to a level surface, per °C of daily temperature
range. This specific value of ATR leads to an over-
heating of 4°C on a clear day with a range R =
28°C on a sloped surface with v = 1.

In BioSIM, an index of northern exposure (A,
expressed in degrees from horizontal along a
north–south axis) is used to simplify simultaneous
consideration of slope and aspect. This purely em-
pirical index was designed to account for as much
as possible of the variation in the overheating index
(v in equation 4) as a function of latitude, slope,
and aspect (Fig. 3):

A = Slope. [Cos2(lat) . @

+ Sin2(lat) . Cos(Aspect – 15)], (5)

where

Slope is expressed in degrees from horizontal and
aspect is expressed in degrees from north. The an-
gular shift of 15° on aspect takes into account the
integration of radiant energy from 1100 to 1500
hours (equation 1) that is centered on 1300 hours
(a 15° shift from solar noon).

Here, positive values of A are considered to be
north-facing and negative values south-facing (Fig.
4). At the equator where Cos(lat) = 1 and Sin(lat)
= O, all slopes oriented between 135° and 255° are
considered to be south-facing (@ = – 1) and the
others north-facing. At 90°N, where Cos(lat) = O
and Sin(lat) = 1, only the north–south component
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Fig. 4. Proportion of variation in overheating index v
explained by a 2nd-degree polynomial regression with ex-
posure index A at 4 latitudes (25°, 35°, 45°, and 65° N)
over the year.

of slope contributes to exposure. At 45° N, both
terms are equally important (Cos2(45) = Sin2(45)
= 0 . 5 ) .

In BioSIM, A is varied from –45° to 45° for each
target site and elevation. For each simulation, the
average annual value of v for 8 combinations of
slopes and aspects that produce the specified value
of A is calculated and used to adjust daily maxi-
mum temperatures for exposure (using equation
4).

Model Output Analysis and Map Generation.
The process of model output analysis and map
generation is illustrated in Fig. 1. BioSIM can ac-
commodate an arbitrary number of simulation
models that are independent of the system and can
be added or deleted easily from the model base
(R6gni&-e  et al. 1995a). Models that are compati-
ble with the system use time series of daily air
temperature minima and maxima as input, and
output daily time series of the values of state vari-
ables such as life stage frequencies, population
density, parasitism rates, defoliation, etc. The sys-
tem offers extensive interpretation capabilities of
model output, allowing the definition of simple tar-
get events (e.g., the maximum value of a variable
or the time of its occurrence) or relationships be-
tween events (e.g., difference, ratio). The event in-
terpreter scans model output and builds an event
table containing simulation point coordinates (lat-
itude, longitude, elevation, exposure ) and event
values. This table then is submitted to multiple lin-
ear regression (including polynomial terms of up
to the 4th degree). The resulting regression model
is then used to transform a digital elevation model
into a target event map that constitutes a land-
scape-wide representation of model output. Slope
and aspect are calculated from neighborhood ele-
vations in the digital elevation model using the
3rd-order finite difference method (Skidmore
1989). The algorithm was designed to be used at
standard USGS digital elevation models scales (i.e.,

7.5’ to 1° scales, with cell sizes of 30-100 m). Using
it at much different scales would probably be un-
justified.

The map thus created can be used directly (e.g.,
as suggested by Schaub et al. 1995), or in a context
of broader decision support where additional
sources of information such as risk and resource
maps can be combined to develop pest or resource
management plans.

Case Study. The general validity of target event
forecasts is determined by the degree of realism in
the air temperature data, by the precision and ac-
curacy of the seasonal biology model used, and by
the process of weather forecasting itself. This de-
pends to a large extent on the input datasets
(weather databases), the simulation model being
used, and the event being forecasted. Because of
this specificity, tests of such forecasting systems
must be done through case studies.

The current case study is intended as an illus-
tration of the required steps and forms the basis
of a general discussion of the sources of error in-
herent to forecasting temperature-driven seasonal
processes. It draws extensively from a test of
BioSIM’s performance in forecasting the phenol-
ogy of the spruce budworm, Choristoneura fumi-
ferana (Clemens) in New Brunswick, Canada, in
1992 and 1993 (R6gni&-e  et al. 1995b). In this test,
the forecasting abilities of 2 widely different sim-
ulation models were compared—Lysyk's degree-
day model (Lysyk 1989) and R6gni&-e’s process-
onented model (R6gni&-e  1982, 1983, 1984, 1987,
1990; R6gni&-e and You 1991). Both models per-
formed equally well, therefore results from the
R6gni&e  model only are discussed further here.

Sources of Data. The New Brunswick Depart-
ment of Natural Resources and Energy (NBDNRE)
provided the normals and real-time weather data
for the province of New Brunswick (no 5-d fore-
cast temperatures were used in this study). Also
available was a definition of boundaries dividing
the province into 3 climatic zones designed to take
into account pronounced maritime influences near
the Gulf of St. Lawrence and Bay of Fundy (Fig.
2). Data loggers were installed in 1993 in standard
shelters in clearings at 5 sampling sites to record
daily minimum and maximum air temperatures
from early April to late July.

Spruce budworm population development was
monitored every 2–3 d from May to July in 5 sites
in 1992 and 1993. Sampling in 1993 was done in
the immediate vicinity of the temperature record-
ing equipment. Average instar a was used as an
expression of population age structure:

(7)

8

~fi i,t

a+=+,

Xfi,t
i=z

where ƒi , i = 2, 3, 4, 5, 6, 7 (pupae) and 8 (pupal
cases) is the frequency of the various life stages in
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foliage samples. Dates of peak life stage frequen-
cies (a = 3.0, 4.0, 5.0, and 6.0) for each sample
site were estimated to the nearest day. Predicted
average instar also was output by the simulation
model. The model-output interpreter was used to
determine the predicted date of occurrence of
peak life stage frequencies based on predicted av-
erage instar.

Temperature Regime Assembly. R6gni&-e  et
al. ( 1995b) tested the adequacy of assembled tem-
perature regimes by comparing relationships be-
tween elevation and average air temperature from
April to July for observed (on-site) and assembled
temperature regimes. However, these authors did
not address the issue of slope and aspect. The in-
fluence of exposure on daily maximum air temper-
ature in regimes assembled by BioSIM was com-
pared with observations made by Dickison and
Greenbank (1972) in the same area of New Bruns-
wick. Exposure was varied systematically from
– 30

0 to 30” northern exposure, and temperature
regimes were assembled using the 5 sets of on-site
weather records as a basis. Daily maximum tem-
peratures in June were averaged over the sites, and
regression analysis was used to estimate the over-
heating effect of exposure (in °C per 10° south).
The same relationship was calculated for 13 June
1993, a typical warm, sunny day: observed maxi-
mum, 31.75°C; minimum, 11.O°C; range, 20.75°C).

Model Bias and Precision. R6gni&-e  et al.
(1995b) tested model bias and precision. Bias was
computed by averaging the deviations between ob-
served and simulated dates of peak average instars
over the 5 sites and 4 life stages (a = 3.0, 4.0, 5.0,
and 6.0), using on-site temperature records as
model input. Precision was calculated by averaging
the absolute values of deviations. The same cal-
culations were made for simulations using temper-
ature regimes assembled from the NBDNRE da-
tabases. Bias and precision of model output using
on-site and assembled temperature regimes were
compared with t-tests (comparisons not made by
the original authors). In addition, R6gni&-e  et al.
(1995b) compared observed and predicted rela-
tionships between elevation and dates of peak lar-
val instars using on-site temperature data.

Temperature regimes assembled by applying a
range of exposures (from — 30° to 30° northern ex-
posure) to the records of each on-site station were
used as input for the R6gni&-e model. The date at
which average instar reached a = 4 was recorded.
This value of a is a likely timing target for control
of spruce budworm with Bacillus thuringiensis in
New Brunswick (Carter and Lavigne 1994). Also,
2 series of simulations were conducted for 9 loca-
tions in a regular 3 x 3 grid within the area delim-
ited by (46° 23’ N, 65°30’ W) and (47° 23’ N, 66°
30’ W) (Fig. 2). For each location, elevation and
exposure were varied from O to 500 m in 100-m
increments and from —45° to 45° in 15°— incre-
ments (378 simulations in each series). In the 1st
series, the 1993 on-site temperature records were

used as model input. In the 2nd series, only data
from the NBDNRE normals database were used
in temperature regime assembly. Relationships be-
tween the date of occurrence of a = 4, and lati-
tude, longitude, elevation, and exposure were es-
timated from model output by multiple regression
analysis. Using the results of the 2nd simulation
series, a target event map of the expected target
event (date at which a = 4) was obtained by al-
gebraic transformation of a digital elevation model
from the delimited area.

Forecasting Performance. R6gni~re  et al.
(1995b) determined the overall patterns of fore-
casting error associated with the 4 target larval in-
dices (a = 3.0, 4.0, 5.0, and 6.0) by varying system-
atically the length of the forecast period. The
process involved the use of a gradually increasing
amount of on-site temperature data in model input
which simulates the accumulation of real-time
temperature data as a season progresses. The re-
sults obtained by these authors for the 1992 and
1993 seasons are illustrated in a somewhat differ-
ent manner here to clarify the interaction between
length of the forecast period and time into the
growing season that an event is expected to occur.
The changing values of forecast dates of occur-
rence of each peak larval index were graphed as a
function of time as they converged toward the ac-
tual target events.

Results

Case Study. Temperature Regime Assembly.
R6gni&-e et al. ( 1995b) found no differences in the
slopes or intercepts of relationships between ele-
vation and average April-July air temperatures
among on-site records, temperature regimes as-
sembled by BioSIM for these sites, or records in
the NBDNRE real-time weather database. Thus,
compensation for differences in elevation and lat-
itude between source and target sites in this case
study performed quite adequately.

The slope of relationships between exposure and
daily maximum air temperature on 13 June, 1993
(a warm, sunny day) was 0.56°C per 10° slope along
a north-south axis. This value is similar to obser-
vations made by other authors in forest canopies
on sunny summer days; Dickison and Greenbank
(1972) found 0.50°C per 10° slope exposure in the
same area of New Brunswick; Lorenz (1969, as cit-
ed by Dickison and Greenbank 1972) measured
0.56°C per 10° slope in German forests. The effect
of exposure on average daily maximum tempera-
ture over the entire month of June 1993 was some-
what less pronounced (0.38°C per 10° slope) as a
result of lower average daily temperature ranges.
Daily temperature range is correlated with cloud-
iness, which in turn reduces insolation (equation
4). The relationship between exposure and maxi-
mum air temperature was strongly nonlinear at all
elevations (Fig. 5a). Dickison and Greenbank
(1972) observed that canopy temperature in mid-



October 1996 REGNIERE:  LA N D S C A P E-WIDE F O R E C A S T I N G 875

Fig. 5. (A) Relationship between elevation, exposure
(slope and aspect), and average daily maximum air tem-
perature among 5 sampling sites in New Brunswick in
June 1993. (B) Relationship between elevation, exposure,
and predicted date of occurrence of peak spruce bud-
worm 4th instar in same sampling in 1993. Closed circles
are observed values.

summer decreased on south-facing slopes exceed-
ing 12° in slope ( – 12° in this study). BioSIM pre-
dicted this accurately. However, the same authors
suggested that temperature leveled off on north-
facing slopes exceeding 20°, although their data do
not show this clearly. BioSIM predicted that tem-
peratures should decrease continually with increas-
ing northern slope.

Model Bias and Precision. R6gni5re  et al.
(1995b) reported no significant bias in predicting
spruce budworm development using R6gni&-e’s
phenology model with either on-site (0.4 d) or as-
sembled (-0.8 d) temperature regimes as input.
This slight difference was not statistically signifi-
cant (t = 1.18, df = 37, P > 0.25). Model precision
did not differ significantly whether on-site (±2.26
d) or assembled (±2.78 d) temperature regimes
were used (t = –0.75, df = 35, P > 0.46).

The same authors also reported that predicted
and observed relationships between spruce bud-
worm development and elevation were not signif-
icantly different. Simulation results in the current
study suggest that the influence of elevation on de-
velopment is somewhat more pronounced in near-

A
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B
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Fig. 6. (A) Relationship between elevation, exposure
(slope and aspect), and expected date of occurrence of
peak spruce budworm 4th instar in New Brunswick in
1993, based on real-time air temperature records from
stations within area delimited by 46° 23’ N, 65° 30’ W
and 47° 23’ N, 66° 30’ W (3 X 3 grid), (B) Same rela-
tionship based on temperature regimes generated from
normals (stochastic) from normals-generating stations in
same area.

level terrain than on steep slopes (Fig. 5b). A sig-
nificant interaction was found between elevation
and exposure (F = 9.5; df = 1, 30; P < 0.004) that
explained only =1.4% of the total variation in pre-
dicted dates of peak 4th instar. At the lowest ele-
vation (61 m), peak 4th instar was reached 11 d
later in steep north slopes (exposure 30”) than in
south slopes (-20°). At the highest elevation (425
m), this difference was only 8 d. This interaction
probably resulted from the nonlinear nature of the
insect’s developmental responses to temperature
(R6gni&-e  1982, 1987, 1990).

A significant elevation and exposure interaction
was not found in the results of the multiple re-
gression analysis of the simulation outputs for the
first 3 X 3 grid-point series (Fig. 6a). The regres-
sion model used in this analysis,

explained 85% of the variation in the date of oc-
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Table 1. Multiple regression analysis of relationship between predicted date of occurrence of peak 4th-instar
spruce budworm, latitude, longitude, elevation, and exposure (equation 8)

Term F df P Partial Rlz Coefficient

Intercept, a — — — 265.95 ± 24.23
Latitude, b 33.4 1 <0.001 0.014 1.730 ± 0.299
Longitude, c 90.2 1 <0.001 0.037 –2.841 ± 0.299
Elevation, d 756.8 1 <0.001 0.407 0.0197 ± 0.0007
Exposure, e 329.7 1 <0.001 0.310 0.1311 ± 0.0072
Exposure2, f 195.2 1 <0.001 0.080 0.00219 ± 0.00016
Elevation exposure, g 0.22 1 >0.637 0.000 –0.00001 ± 0.00002
Error 30 — 0.848a

Simulations using 1993 temperature data from the NBDNRE real-time weather database.
a T o t a l  R2 . 

currence of peak 4th instar in that series (Table 1).
Partial R2 values indicate the relative importance
of each independent variable in explaining this
variation: elevation explained 40.7%, exposure (in-
cluding both terms ) 39%, longitude 3.7%, and lat-
itude 1.4%. Because there was no stochastic
variation in temperature regimes used as input, the
15% unexplained variation represents “lack of fit.”

The same regression model (equation 8), ap-
plied to the results of the second 3 X 3 grid-point
series (based on normals), explained 72% of the
variation in the target event (Table 2). Most of the
extra residual variability stems from the use of sto-
chastic–normal temperature regimes as model in-
put (Fig. 6b). The target event map of expected
dates of peak 4th-instar occurrence generated by
transformation of the digital elevation model is
shown in Fig, 7. The predicted influence of slope
and aspect on insect development is clearly visible
on this map.

Forecasting Performance. On average over the
1992 and 1993 sampling sites, forecast dates of
peak 3rd, 4th, 5th, and 6th instar occurrence con-
verged to within 48 h of the actual event dates
(Fig. 8). Development of spruce budworm in 1992
was considerably faster than could have been ex-
pected from normals. Early-season forecasts were
correspondingly late compared with actual event
dates (Fig. 8a). In contrast, development in 1993
was slower than normal, and early forecasts were
much earlier than actual events (Fig. 8b). Despite
this difference in the direction of forecast error,
the rate at which the forecasts converged toward

the approaching actual events was quite similar be-
tween years. In both cases, the earliest event (peak
3rd instar) was not accurately forecast until within
4 d of its actual occurrence. The forecast date of
peak 6th instar converged to a stable date at least
30 d before the actual event. Convergence of fore-
casts for 4th and 5th instars were intermediate
(=10 and 20 d, respectively).

Discussion

The method used here to project the output of
temperature-driven seasonal biology models to the
landscape level offers several advantages over the
methods proposed by Russo et al. (1993) and
Schaub et al. (1995). First, it provides a direct anal-
ysis of the influence of landscape features on the
ecological processes being studied rather than on
the underlying temperatures as was done by Russo
et al. (1993). However, contrary to the method of
Schaub et al. (1995), the method used here makes
use of as much weather information as may be
available for a given area and explicitly takes into
account several major sources of geographical vari-
ation in temperature other than elevation—slope
and aspect, latitude, longitude, and regional effects
such as maritime influences. Because of its ability
to use weather data from several sources in the
generation of a target event map, the method used
here is not as sensitive to errors in data from single
weather stations as that of Schaub et al. (1995).
However, for implementation in areas with very
sparse weather stations (such as northern Canada),

Table 2. Multiple regression analysis of the relationship between predicted date of occurrence of peak 4th-instar
spruce budworm, latitude, longitude, elevation, and exposure (equation 8)

Term F df P Partial R2 Coefficient

Intercept, a
Latitude, b
Longitude, c
Elevation, d
Exposure, e
Exposure2, f
Elevation . exposure, g
Error

11.9
1.29

488.9
154.1

3.22
0.41
—

—
1
1
1
1
1
1

30

—
<0.001
>0.257
<0.001
<0.001
>0.073
>0.523
—

—
0.009
0.001
0.370
0.336
0.002
0.000
0.718a

112.34 ± 40.74
1.738 ± 0.503

–0.571 ± 0.503
0.0266 ± 0.0012
0.1507± 0.0012
0.00047 ± 0.00026

–0.00003 ± 0.00004

Simulations using temperature data from the NBDNRE normals weather database.
d Total R2.
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Fig. 7. Target event map of date of occurrence of spruce budworm peak 4th instar, calculated from a digital
elevation model of area delimited by 47° O’ N, 65°38’ Wand 47° 8’ N, 65° 30’ W.

it may be necessary to generate synthetic weather
data with algorithms such as those used by Russo
et al. (1993). Such data could be incorporated into
augmented weather databases for use in BioSIM.

Using BioSIM to generate target-event maps
(sensu Schaub et al. 1995) requires less computer

A

110  120  130  140  150  160  170  180 120  130  140  150  160  170  180  190

I May I June I May I June I

D a y  o f  y e a r

Fig. 8. Convergence of forecast dates with observed
dates of occurrence of peak larval indices 3, 4, 5, and 6
over the season among sampling sites in New Brunswick
(after R&gni&-e et al. 1995a). (A) 1992. (B) 1993. Open
stars indicate dates of actual events. Spring temperatures
in 1992 were cooler than normals but were warmer in
1993.

time than the method of Russo et al. (1993) be-
cause the analysis of model output can be based
on a much smaller number of simulations. The dif-
ference in computing power requirements can be
considerable. For example, generating the map
shown in Fig. 7 with the method of Russo et al.
(1993) would have required >130 h on a Pentium-
133 computer compared with 45 min with Bio-
SIM. This method also restores stochasticity to
normals used in seasonal weather forecasting to ac-
commodate the Kaufman effect (Werner 1992). It
can also handle a large number of simulation mod-
els and can extract and analyze a wide variety of
model output features. The resulting target event
map can be used in ecological research as well as
in pest management, directly or as an additional
layer of information for decision-support tools us-
ing geographical information systems.

The method used here was originally developed
to deal with landscapes at a scale of 10–100 km
(cell sizes of 30-100 m). However, it can be adapt-
ed for application to much larger landscapes (e.g.,
cells >1 km). Of course consideration of slope and
aspect at such low resolution would make little
sense. Two modifications implied by such an in-
crease in scale are as follows: (1) selection of more
numerous simulation points, using actual point el-
evations rather than varving elevation svstemati-

u
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Fig. 9. Schematic representation of the 4 sources of
error associated with forecasting of insect development
and their effect on predictability of seasonal events.
Sources a and ~ are caused by model error (including
microclimate and thermoregulation) and inadequate cli-
mate matching. Sources 8 and l are related to forecasting
process; = is random error caused by use of stochastic
normals; 8 is caused by systematic deviations between
actual weather of a season and normals. (A) Error funnel
for an early-occurring event (e.g., peak spruce budworm
3rd instar), (B) Error funnel for a late-occurring event
(e.g., peak spruce budworm 6th instar).

tally for each location; and (2) analysis of spatial
features in predicted target events using geosta-
tistical methods such as kriging or kriging with ex-
ternal covariates (Liebhold et al. 1993), or multiple
additive models with explicit spatial modeling
(Preisler et al. 1996).

Forecasts of target events in pest management
(or of the outcome of any temperature-dependent
ecological processes) are only as reliable as the
models used to generate them and the tempera-
ture regimes used as model input. An additional,
unavoidable, and perhaps more insidious source of
forecast unreliability is inaccuracy of seasonal fore-
casting. To discuss the issue of seasonal forecast
reliability, it is useful to formally distinguish the
various sources of error involved.

Assuming that measurement error associated
with observed events is negligible, 4 sources of er-
ror can affect forecasts made by temperature-driv-
en simulation models. These are illustrated in Fig.
9. The first 2, a and ~, can cause deviations be-
tween model predictions and observed events even
when the model is driven by actual on-site tem-
perature input (no forecasting). Error source a
represents the inaccuracy of the simulation model
itself, caused by inadequate or incomplete descrip-
tions of the processes being modeled. This error
also includes differences between the temperature
experienced by the organism and air temperature
(microclimate, thermoregulation). It causes ran-
dom (imprecision) or systematic (bias) deviations
between model output and actual events. Model

validation using on-site temperature data as input
and comparing simulation results with observations
taken in the same site can provide information on
the magnitude and characteristics of a error. Many
seasonal models (e.g., R6gni&-e 1982) take micro-
climate into explicit consideration.

The 2nd source of error, /3, is caused by differ-
ences between actual on-site temperature and the
temperature regime used as model input. It is un-
usual for on-site temperature data to be available
in the operational use of models. Several factors
can lead to ~ error: inadequate data source match-
ing, erroneous lapse rate corrections or other land-
scape effects such as cold air drainage or terrain
shading, and errors in the temperature records
themselves. The magnitude of ~ can be deter-
mined only if a is known.

The other 2 sources of error, 8 and ● , apply to
events for which real-time temperature data are
not yet available. This implies weather forecasting,
either from records of past years or from normals
to which stochastic variation is restored. In either
case, the fluctuations about expected (normal)
temperature regimes cause corresponding uncer-
tainty in model forecasts. The random component
of this uncertainty (= ) can be reduced to a negli-
gible level by replicating simulations and averaging
model output. How much replication is needed
depends on several factors, particularly the length
of the forecast period (the amount of forecast tem-
perature data relative to real-time data), the de-
gree of precision required of the model’s output,
and the specific process being simulated. The sys-
tematic (patterned) component of forecast uncer-
tainty (8) is the result of systematic deviation of
actual temperature in any given year from normals.
The resulting model predictions deviate corre-
spondingly. Thus, in a cold year, forecast events
tend to be earlier than observed, and vice versa.
Such systematic deviations vanish gradually during
a season as the amount of effective real-time tem-
perature data available increases. Here, the term
effective refers to those temperatures that can in-
duce significant development, and is therefore spe-
cific to the exact temperature-dependent responses
involved in the prediction. The magnitude and pat-
tern of 8 error can be known only in retrospect.

One important characteristic of the 8 compo-
nent of forecast error is the rate at which it con-
verges to O, leaving only a. and ~ as error sources.
This convergence rate is highly dependent on the
amount of development (effective temperature)
required to reach the target event. Early-occurring
events require a short time series of effective tem-
peratures, and daily stochastic deviations of tem-
perature regimes have a large impact on the actual
event. Late-occurring events, on the other hand,
require a longer temperature time series and are
accordingly less sensitive to daily random fluctua-
tions that tend to “average out” by the phenome-
non of regression to the mean. Thus, as a general
rule, it is far easier to forecast later- than earlier-
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occurring events. In our case study, the date of
spruce budworm peak 3rd instar is, by nature,
highly unpredictable, whereas the date of peak 6th
instar can be forecast accurately almost 1 mo in
advance in New Brunswick. For this reason, it may
be necessary to use short-term temperature pre-
dictions to forecast early-occurring events ade-
quately (such as spruce budworm 3rd instar).
BioSIM offers this possibility through its 5-d fore-
cast weather database.

Minimizing and estimating a error is an issue
that is normally dealt with by model developers.
BioSIM has been developed to minimize the am-
plitude of B error. The vertical lapse rates used by
default in the system (and in the present case
study) are those estimated by R6gni&e  and Bol-
stad (1994) from an array of weather stations in
and around the Great Smoky Mountains in west-
ern North Carolina. Different vertical lapse rate
estimates can and should be provided as input to
BioSIM’s temperature assembly algorithm (Fig. 1)
so that the system could be used in areas distant
from the eastern Atlantic portion of North Amer-
ica. For example, the pronounced maritime effect
present in eastern New Brunswick could very well
affect regional vertical lapse rates. However, the
use of carefully delineated climatic zones in the
weather station selection process probably accom-
modated this influence to a large extent.

Corrections for latitudinal temperature gradi-
ents are relatively small and should have little ef-
fect on assembled temperature regimes except in
areas where weather stations are very sparse (such
as in the Canadian North). In our case study, ele-
vation, slope, and aspect accounted for most of the
variation in predicted dates of peak 4th-instar
spruce budworm frequency (series 1, 85%; series
2, 72%). Latitude and longitude may actually not
be of much use as predictors in the transformation
of digital elevation models into target event models
unless the area under consideration is highly het-
erogeneous climatically. In such cases, particularly
where weather station density is low, climatic zone
definitions may be required for adequate land-
scape-wide forecasting of temperature-driven pro-
cesses. In the case study discussed here, longitude
had slightly more predictive power than latitude
(3.7 versus 1.4%), probably because longitudinal
climatic heterogeneity existed in the study area
along the boundary of the East Shore climatic
zone.

Compensation of temperature regimes for slope
and aspect using the incident-light approach of
Bolstad et al. (1996) produced overheating figures
that compared quite well with observations in for-
ested canopies in summer ( Dickison and Green-
bank 1972). However, overheating can be far more
pronounced in other types of vegetation, particu-
larly in grasses and exposed soils (Paltridge and
Platt 1976). Therefore, modifications would be re-
quired to use this algorithm in an agricultural con-
text (particularly the value of AT~  in equation 4).

The predicted impact of slope and aspect on insect
development was not validated, however. Data for
such validation in the case of spruce budworm do
not exist at this time. The validity of predictions
concerning the relationship between elevation and
spruce budworm development ( R6gni&e  et al.
1995b) indicates that the model simulates the in-
sect’s microclimate adequately and that the insect
does not thermoregulate to an overriding extent.
However, there are well-documented examples
where thermoregulatory behavior overrides the in-
fluence of latitude, elevation, and perhaps slope
and aspect on the temperatures experienced by the
insect (see Rock et al. 1993).
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